
TraitRateProp – manual and code documentation

1. Overview – the purpose of the code is to infer associations between transitions in the character state and
the rate of sequence evolution. Inference can be performed for three models: ‘null’, ‘TR’, and ‘TRP’.

Before going into the technical details, the program takes as input the following:
1.1. A rooted ultrametric phylogentic tree with branch lengths (Newick)
1.2. A multiple sequence alignment (MSA) of the sequence data of the extant species (Fasta)
1.3. The character states of the extant species coded as either ‘0’ or ‘1’ (Fasta)

The program outputs result files with the inferred model parameter values and the log-likelihood of the
fitted models.

The full details of the TraitRateProp model are given in its manuscript (Levy Karin E., Wicke S., Pupko
T., and Mayrose I. An integrated model of phenotypic trait changes and site-specific sequence
evolution. 2017). The details concerning its implementation are given in the appendix. This manual and
code documentation assumes familiarity with the information therein.

2. Source code and executable – in the Rar file we provide:

 The TraitRateProp source code

 A pre-compiled program for UNIX

 Template control files

3. Compilation – the compiler version used by us is gcc 6.2.0. In order to compile on UNIX you will need to
perform the following steps:

1. Go to directory libs/phylogeny/ by typing: "cd DOWNLOAD_DIR/libs/phylogeny/"
2. To compile the library type: "make doubleRep"
3. Go to the source directory by typing: "cd ../../programs/traitRateProp/"
4. Compile the program by typing: "make doubleRep".

The executable traitRate.doubleRep will be created under: programs/ traitRateProp /

4. Running TraitRateProp – the program is run with a configuration file:
traitRate.doubleRep CONFIGURATION_FILE

5. Running a toy example – As a first step we recommend running a toy example, following these steps:
5.1. Create a directory for the example (mkdir EXAMPLE_DIRECTORY)
5.2. Save the example input MSA file to EXAMPLE_DIRECTORY
5.3. Save the example input trait states file to EXAMPLE_DIRECTORY
5.4. Save the example input tree file to EXAMPLE_DIRECTORY
5.5. Save the example TraitRateProp configuration file to EXAMPLE_DIRECTORY
5.6. Edit the example TraitRateProp configuration file by replacing

"FULL_PATH_TO_YOUR_EXAMPLE_DIRECTORY" with the full path to the example directory you
created
This edit will require 5 changes in the example TraitRateProp configuration file

5.7. Run SpartaABC with the edited configuration file:
5.8. traitRate.doubleRep EXAMPLE_DIRECTORY/ TRP_configuration_file.txt

The outputs of the run will be written in FULL_PATH_TO_YOUR_EXAMPLE_DIRECTORY/result/

6. Input configuration – the code is run with a configuration file in which input parameters are set. The
parameters of interest for the user are described in the table below. In addition, we provide template
configuration files (see next section of this document).

Parameter
group

Parameter name Description Possible values Default value

Program run
mode

_mainType TraitRateProp run mode.
Either both “null” and
“alternative” models are

“Optimize_Model” (null &
alternative)

computed or just the
“alternative” model is
computed. In case both are
computed, the null results
serve as one starting point
for the alternative model

 “Optimize_Model_Alter_Only”
alternative)

Other options exist for debug
and simulation purposes (not
for users)

Input files _treeFile An ultrametric newick
format tree

a full path to the file

_characterFile Character states for all
extant species in fasta
format

a full path to the file

_seqFile MSA of all extant species in
fasta format

a full path to the file

Output files
and
directories

_outDir Directory where the output
should be written

a full path to the directory

_outFileNullParams The null model output a full path to the file

_outFile The alternative model
output

a name (will be created under
the output directory)

_logFile The log output a name (will be created under
the output directory)

log.txt

_LLPerPositionFile The likelihood of each
position as trait-dependent
and as trait-independent

a name (will be created under
the output directory)

_scaledTreeFile The final sum of branch
lengths dictates a factor by
which the ultrametric tree is
scaled. The final character
model parameters dictate a
collection of stochastic
mappings. Each of these
mappings is used with the
final r parameter to stretch
the final scaled ultrametric
tree (no longer ultrametric
after the stretch). These
stretched versions of the
scaled ultrametric tree are
averaged and the result is
written to the file defined by
_scaledTreeFile

a name (will be created under
the output directory)

scaled.tree

What to
optimize

_bGridStartPoints Should (p,r) combinations
for starting points be
sampled from a grid or
randomly. If either p or r

are not optimized – set to 0

0 - randomly,1 – by grid 1

_bOptCharModel Should character model
parameters be optimized

0 – don’t optimize,1 - optimize 1

_bOptProportion Should p (proportion)
parameter be optimized

0 – don’t optimize,1 - optimize 1

_bOptRelRate Should r (relative rate)
parameter be optimized

0 – don’t optimize,1 - optimize 1

_bOptSeqModel Should sequence model
parameters be optimized

0 – don’t optimize,1 - optimize 1

_bScaleTree Should sum of branch
lengths be optimized
(search for a factor by
which all branches are
multiplied)

0 – don’t optimize,1 - optimize 1

How to
optimize

_optimizeIterNum Number of optimization
iterations in each round

Non-negative integers
separated by commas

0,2,5

_optimizePointsNum Number of points to
optimize in each round

Non-negative integers
separated by commas

10,3,1

_optimizeStrategies Optimization strategy in
each round (1 = heuristic, 0
= exhaustive)

{0,1} separated by commas 1,1,1

_stochasicMappingIterations Number of stochastic
mappings to be used

Positive integer 100

Setting _charModelParam1 Character model [0,1] 0.5

parameter
values

𝜋1 parameter value. If

given, will be used for all
starting points. If character
model is not optimized –
will be used as value

_charModelParam2 Character model µ
parameter value. If given,
will be used for all starting
points. If character model is
not optimized – will be used
as value

(0,MAX_DOUBLE) 1.0

_gammaCategories Number of discrete rate
categories to use

Positive integer 4

_gammaParam The α parameter of the
gamma distribution of rate
variation among sequence
sites. If given, will be used
for all starting points. If
sequence model is not
optimized – will be used as
value

(0,MAX_DOUBLE) 1.0

_proportion The p (proportion of
positions associated with
the trait) parameter. If
given, will be used for all
starting points. If proportion
is not optimized – will be
used as value

[0,1] 1.0

_relRate The r (relative rate)

parameter. If given, will be
used for all starting points.
If proportion is not
optimized – will be used as
value

(0, MAX_DOUBLE) 1.0

_relRateMaxVal The maximal r value to
sample from when
selecting starting points.
Values are selected
between 1/r and r (as this is
a multiplicative factor, the
range is first log-
transformed then sampled
uniformly and then
transformed back)

(0, MAX_DOUBLE) 4.0

_seqModelParam1 The κ parameter (transition
/ transversion) of the
HKY85 model. If given, will
be used for all starting
points. If sequence model
is not optimized – will be
used as value

(0,MAX_DOUBLE) 1.0

_sequenceType The kind of sequence data
to analyze (DNA or AA).

{NON_CODING,PROTEIN} NON_CODING

_seqModelType The kind of sequence
model to use.

{HKY,JTT} HKY

_treeLength Sum of branch lengths. If
given, will be used for all
starting points. If tree
length is not optimized –
will be used as value

{-1.0,(0,MAX_DOUBLE)} -1.0 (no set
value)

7. Template configuration files – we provide the following inference templates:

1. Inferring with the TR model (proportion parameter is set to 1) and with the null model
2. Inferring with the TRP model (proportion is free) and the null model
3. Inferring with the TRP model (proportion is free)

If you are not interested in comparing the TR model to the TRP model, we recommend running option
number 2 (comparing the TRP model to the null model).

In addition, if you work with option 3, you could provide the resulting inferred parameters of the TR
model as a starting point to the TRP model. In order to this, you'll need to obtain the parameter
estimates from the result file of the run with template number 1. For example:

_charModelParam1 0.641014
_charModelParam2 15.4164
_relRate 1.1
_proportion 1
_treeLength 0.7932
_gammaParam 0.571747
_seqModelParam1 1.01107

8. Outputs – TraitRateProp generates three output files of interest:
8.1. The alternative results file (set in _outFile) – contains information about the parameter estimations

under the alternative model (TR or TRP) and the log-likelihood scores of the null model (model 0) and
the alternative model. These scores can be used for the chi-sq LRT.

8.2. The null results file (set in _outFileNullParams) – contains the null model parameter estimations.
8.3. The position likelihoods file (set in _LLPerPositionFile) – in the TRP alternative model, the likelihood

of each position is computed once with no association between the rate and the phenotypic trait and
once with such an association. This file contains these computations for each position and the ratio
between them (= the Bayes factor).

9. Code structure scheme – only TraitRateProp internal dependencies are presented:

10. Code modules main purpose:
10.1. utils:

Purpose: Provide functionality, such as checking tree and MSA have matching taxa.

10.2. stochasticMapping:
Purpose: Generate stochastic mappings and related functionality.

10.3. twoStateModel:

Purpose: Character (trait) model representation and functionality.

10.4. traitRateOptions:
Purpose: Manage input configuration file and default values

10.5. CharAndSeqModel:
Purpose: Represent a joint object with two stochastic processes; that of the sequence and that
of the character as well as the tree and the relative rate and proportion parameters. Handle all
likelihood computations and tree scaling procedures given all of its defined parameters.

10.6. evalParamsCombinedModel:
Purpose: Provide wrappers for the various likelihood computation modes of CharAndSeqModel.
This is needed for Brent optimization scheme.

10.7. simulateCombinedModel:
Purpose: Handle character and sequence simulation given model parameters. It is used for
internal purposes only (simulation study, debug) and nit intended for users.

10.8. traitRateOptimizer:
Purpose: Manage optimization scheme: “null”, “alternative” or both. In case of “alternative”
optimization, handle the optimization rounds in terms of starting points, strategies and maximum
allowed iterations. When optimizing each point, a loop of optimizations is performed (according
to the parameters set to be optimized): the relative rate and proportion parameters, the
sequence model, the tree length, and the character model. When changes to the tree length or
the character model parameters occur, a new set of stochastic mappings is generated.

10.9. traitRateMng:
Purpose: Initialize models, set up and manage the required optimization scheme and write the
required outputs.

10.10. traitRate:
Purpose: Handle the program run mode. If valid, call the required traitRateMng functionality.

